Nagelamides K and L, Dimeric Bromopyrrole Alkaloids from Sponge *Agelas* Species

Vol. 10, No. 11 2099–2102

ORGANIC LETTERS

2008

Atsushi Araki,[†] Takaaki Kubota,[†] Masashi Tsuda,[†] Yuzuru Mikami,[§] Jane Fromont,[‡] and Jun'ichi Kobayashi^{*,†}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan, and Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia

jkobay@pharm.hokudai.ac.jp

Received February 20, 2008

ABSTRACT

Two new dimeric bromopyrrole alkaloids, nagelamides K (1) and L (2), have been isolated from Okinawan marine sponges *Agelas* species, and the structures and stereochemistry were elucidated from spectroscopic data. Nagelamide K (1) is a bromopyrrole alkaloid possessing a rare piperidinoiminoimidazolone ring with an aminoimidazole ring and a taurine unit, while nagelamide L (2) is a unique dimeric bromopyrrole alkaloid containing an ester linkage. Nagelamides K (1) and L (2) exhibited antimicrobial activity.

Bromopyrrole alkaloids are known to be common metabolites from marine sponges of several genera. During our search for bioactive substances from marine organisms,¹ we have isolated some bromopyrrole alkaloids with unique cyclic skeletons from sponges of the genus *Agelas* or *Hymeniacidon*.² Recently, we have investigated extracts of two collections of Okinawan marine sponges *Agelas* sp. (SS-1134 and SS-1077) and isolated two new dimeric bromopyrrole alkaloids, nagelamides K (1) and L (2), respectively.³ Nagelamide K (1, Figure 1) is a new dimeric bromopyrrole alkaloid possessing a piperidinoiminoimidazolone ring with an aminoimidazole ring and a taurine unit, while nagelamide L (2) is a unique dimeric bromopyrrole alkaloid containing an ester linkage. Here we describe the isolation and structure elucidation of 1 and 2.

The sponge *Agelas* sp. (SS-1134) collected off Seragaki beach, Okinawa, was extracted with MeOH. BuOH-soluble materials of the extract were subjected to silica gel and C_{18} column chromatographies followed by C_{18} HPLC to yield nagelamide K (1, 0.0025% wet weight) as a colorless amorphous solid together with known related alkaloids,

[†] Hokkaido University.

[§] Chiba University.

[‡] Western Australian Museum.

⁽¹⁾ Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. *Nat. Prod. Rep.* **2008**, *25*, 35–94.

^{(2) (}a) Endo, T.; Tsuda, M.; Okada, T.; Mitsuhashi, S.; Shima, H.; Kikuchi, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. J. Nat. Prod. 2004, 67, 1262–1267. (b) Araki, A.; Tsuda, M.; Kubota, T.; Mikami, Y.; Fromont, J.; Kobayashi, J. Org. Lett. 2007, 9, 2369–2371. (c) Kobayashi, J.; Suzuki, M.; Tsuda, M. Tetrahedron 1997, 53, 15681–15684.

⁽³⁾ Nagelamide K (1): colorless amorphous solid; $[\alpha]^{23}_{D} - 4$ (*c* 0.5, MeOH); UV (MeOH) λ_{max} 277 nm (ϵ 11 200); IR (KBr) ν_{max} 1685, 1220, 1150, and 1050 cm⁻¹; ESIMS (pos.) *m/z* 896, 898, 900, 902, and 904 [1:4: 6:4:1, (M + H)⁺]; HRESIMS (pos.) *m/z* 895.8573 [(M + H)⁺, calcd for C₂₄H₂₆N₁₁O₅⁷⁹Br₄S, 895.8569]. Nagelamide L (2): colorless amorphous solid; $[\alpha]^{20}_{D} \nu_{max}$ 3420, 1720, 1680, and 1640 cm⁻¹; ESIMS (pos.) *m/z* 791, 793, 795, 797, and 799 [1:4:6:4:1, (M + H)⁺]; HRESIMS (pos.) *m/z* 790.8652 [(M + H)⁺, calcd for C₂₂H₂₃N₁₀O₃⁷⁹Br₄, 790.8688].

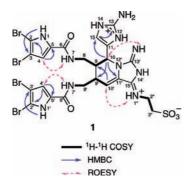


Figure 1. Selected 2D correlations for nagelamide K (1).

tauroacidin A,⁴ taurodispacamide A,⁵ and nagelamide C.^{2a} The ESIMS spectrum of nagelamide K (1) showed the pseudomolecular ion peaks at m/z 896, 898, 900, 902, and 904 (1:4:6:4:1), indicating the presence of four bromine atoms, and the molecular formula of 1 was revealed to be C₂₄H₂₅N₁₁O₅Br₄S by HRESIMS data [m/z 895.8573 (M + H)⁺, Δ +0.4 mmu]. The UV absorption [$\lambda_{max} = 277$ nm ($\epsilon = 11\ 200$)] was attributed to a substituted pyrrole chromophore,⁶ while the IR absorption indicated the existence of amide carbonyl (1685 cm⁻¹) functionality.

The ¹³C NMR (Table 1) spectrum disclosed 24 signals due to 13 sp² quaternary carbons, 4 sp² methines, 3 sp³ methines, and 4 sp³ methylenes. The ¹H NMR (Table 1) spectrum included 10 D₂O-exchangeable signals [$\delta_{\rm H}$ 12.67, 12.62, 12.23, 12.19, 9.94, 9.60, 8.85, 8.31, 8.30, and 7.51] attributed to amino and/or amide protons. Comparison of the ¹H and ¹³C NMR data for **1** with those of known bromopyrrole alkaloids such as nagelamide C^{2a} indicated the presence of two 2,3-dibromopyrrole carbonyl moieties (N-1–C-6 and N-1'–C-6') and a 4,5-disubstituted 2-aminoimidazole ring (C-11'–C-15').

Detailed analyses of the ¹H-¹H COSY and HMQC spectra disclosed connectivities of NH-7 to C-10, NH-7' to C-10', and NH-1" to C-3". The ROESY spectrum showed correlations for NH-7 ($\delta_{\rm H}$ 8.30)/H-4 ($\delta_{\rm H}$ 6.88) and NH-7' ($\delta_{\rm H}$ 8.31)/ H-4' ($\delta_{\rm H}$ 6.86), indicating that the two 2,3-dibromopyrrole moieties were attached to NH-7 and NH-7', respectively, through an amide bond. The presence of a piperidinoiminoimidazolone ring (C-9-C-15 and C-9'-C-10') was deduced from HMBC correlations for H-10' ($\delta_{\rm H}$ 6.52)/C-9 ($\delta_{\rm C}$ 35.5), H-10 ($\delta_{\rm H}$ 5.24)/C-9' ($\delta_{\rm C}$ 38.2), and C-11' ($\delta_{\rm C}$ 130.5). The HMBC cross peak for H-10/C-15 ($\delta_{\rm C}$ 109.7) suggested that an aminoimidazole ring (C-11-C-15) was attached to C-10. The connection of a taurine unit and 13-NH to the piperidinoiminoimidazolone ring was deduced from ROESY correlations for H-10'/NH-1" ($\delta_{\rm H}$ 9.94) and H-10/13'-NH ($\delta_{\rm H}$ 8.85), respectively. Thus, the gross structure of nagelamide

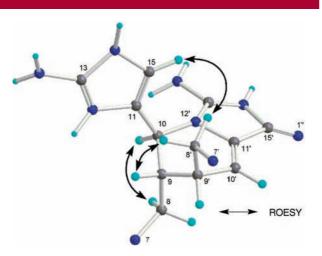
Table 1. ¹ H and ¹³ C NMI	R Data	of Nagelamide	e K	(1) in
DMSO- d_6		-		

position	$\delta_{ m H}$		$\delta_{ m C}$
1	12.62	br s	_
2	-	-	105.0
3	-	_	98.1
4	6.88	s	113.3
5	-	_	128.1
6	-	_	159.5^{a}
7	8.30	br t	_
8	3.20 (2H)	m	41.2
9	2.58	m	35.5
10	5.24	br s	46.9
11	_	_	124.0
12	12.19	br s	_
13	_	_	148.5
$13-NH_2$	7.51 (2H)	br s	_
14	12.23	br s	_
15	6.45	s	109.7
1′	12.67	br s	_
2'	_	_	104.9
3′	_	_	98.1
4'	6.86	s	113.2
5'	-	_	128.0
6′	_	_	159.4^{a}
7′	8.31	br t	_
8′	3.05, 2.79	m	42.5
9′	2.81^{a}	m	38.2
10'	6.52	br d	114.6
11′	-	_	130.5
12'	-	_	-
13'	-	-	164.0
13′-NH	8.85	br s	_
14'	9.60	br s	_
15'	-	_	165.2
1″	9.94	_	-
2"	3.69 (2H)	_	40.4
3″	2.82 (2H)	_	49.6

K was assigned as **1**, possessing a piperidinoiminoimidazolone ring with an aminoimidazole ring and a taurine unit.

The relative stereochemistry for C-9, C-10, and C-9' in **1** was deduced from analysis of NOESY data. NOESY correlations for H_2 -8'/H-9 and H-15 and H-10/H₂-8 indicated that both H-9/H-10 and H-9/H-9' were *anti* as shown in Figure 2.

EtOAc-soluble materials of the MeOH extract of another sponge *Agelas* sp. (SS-1077) collected off Unten-Port, Okinawa, were subjected to silica gel and C_{18} column chromatographies followed by C_{18} HPLC to yield nagelamide L (**2**, 0.0047%, wet weight) as a colorless amorphous solid together with known related alkaloids, longamide A,⁷ tauroacidin A,⁴ taurodispacamide A,⁵ mauritiamine,⁸ and nagelamides B, C, H, and J.²

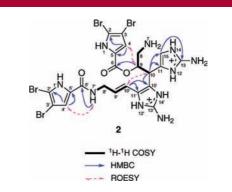

⁽⁴⁾ Kobayashi, J.; Inaba, K.; Tsuda, M. Tetrahedron 1997, 53, 16679–16682.

⁽⁵⁾ Fattorusso, E.; Taglialatela-Scafati, O. *Tetrahedron Lett.* **2000**, *41*, 9917–9922.

^{(6) (}a) Forenza, S.; Minale, L.; Riccio, R.; Fattorusso, E. J. Chem. Soc., Chem. Commun. **1971**, 1129–1130. (b) Gracia, E. E.; Benjamin, L. E.; Fryer, R. I. J. Chem. Soc., Chem. Commun. **1973**, 78–79.

⁽⁷⁾ Umeyama, A.; Ito, S.; Yuasa, E.; Arihara, S.; Yamada, T. J. Nat. Prod. **1998**, *61*, 1433–1434.

⁽⁸⁾ Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. J. Nat. Prod. 1996, 59, 501–503.


Figure 2. Selected ROESY correlations and relative stereochemistry for C-9, C-10, and C-9' in nagelamide K (1).

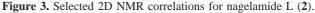

The molecular formula of nagelamide L (2) was established to be $C_{22}H_{22}N_{10}O_3Br_4$ by HRESIMS data [*m*/*z* 790.8652 (M + H)⁺, Δ -3.6 mmu]. ¹H and ¹³C NMR data

Table 2. ¹H and ¹³C NMR Data of Nagelamide L (2) in DMSO- d_6

position	$\delta_{ m H}$		$\delta_{ m C}$
1	12.9	br s	_
2	_	_	108.3
3	_	_	99.3
4	6.91	S	118.8
5	_	_	123.2
6	_	_	157.6
7	8.23 (2H)	br t	_
8	3.21 (2H)	m	41.1
9	5.54	m	69.4
10	4.57	d 8.7	34.4
11	_	_	121.2
12	12.1	br s	_
13	_	_	147.9
$13-NH_2$	7.63 (2H)	br s	_
14	13.1	br s	_
15	7.04	_	112.1
1′	12.7	br s	_
2'	_	_	105.0
3′	_	_	98.2
4'	6.94	S	113.2
5'	_	_	128.4
6′	_	_	159.1
7'	8.45	t 5.3	_
8′	3.93 (2H)	m	40.9
9′	5.94	m	127.4
10'	6.44	d 15.9	116.3
11′	_	-	123.4
12'	12.5	br s	_
13'	_	_	148.5
$13'$ -NH $_2$	7.74 (2H)	br s	_
14'	12.7	br s	
15'	_	-	118.8

(Table 2) of **2** were close to those of nagelamide B,^{2a} while a primary amino proton signal was observed at $\delta_{\rm H}$ 8.23 (2H) in the ¹H NMR spectrum of **2**. The chemical shifts for C-8 ($\delta_{\rm C}$ 41.1) and H-9 ($\delta_{\rm H}$ 5.54) of **2** were different from those of nagelamide B (C-8: $\delta_{\rm C}$ 48.6, H-9: $\delta_{\rm H}$ 4.15). Comparison of NMR data of **2** and nagelamide B revealed the presence of two 2,3-dibromopyrrole carbonyl moieties (N-1–C-6 and N-1'–C-6') and two 2-aminoimidazole moieties (C-11–C-15 and C-11'–C-15') in **2**. The existence of two proton networks for NH₂-7–H-10 and NH-7'–H-10 was deduced from analyses of the ¹H–¹H COSY and HSQC spectra (Figure 3). The HMBC correlation for NH-7' ($\delta_{\rm H}$

8.45)/C-6' ($\delta_{\rm C}$ 159.1) and the ROESY correlation for H-4' ($\delta_{\rm H}$ 6.94)/NH-7' indicated that one of two bromopyrole moieties was connected to N-7' through an amide bond. HMBC correlations of H-10 ($\delta_{\rm H}$ 4.57) to C-11 ($\delta_{\rm C}$ 121.2), C-15 ($\delta_{\rm C}$ 112.1), and C-15' ($\delta_{\rm C}$ 118.8) suggested that the two 2-aminoimidazole rings were attached to C-10. The connection of C-10' to C-11' in the 3,4-disubstituted 2-aminoimidazole ring was inferred from HMBC correlations for H-10' ($\delta_{\rm H}$ 6.44)/C-11' ($\delta_{\rm C}$ 123.4) and H-10'/C-15' and the ROESY correlation for H-10/H-10'. The HMBC correlation for H-9 ($\delta_{\rm H}$ 5.54)/C-6 ($\delta_{\rm C}$ 157.6) indicated that one of 3,4-dibromopyrrole moieties was connected to C-9 through an ester linkage.

The relative stereochemistry for the C-9–C-10 bond of nagelamide L (2) was elucidated by a relatively large *J*(H-9,H-10) value (8.7 Hz) and ROESY correlations for H₂-8 ($\delta_{\rm H}$ 3.21)/H-15 ($\delta_{\rm H}$ 7.04), H-9/H-15, and H-10/H-10' (Figure 4).

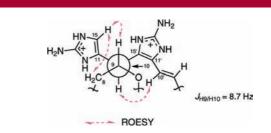


Figure 4. Rotation model for C-9/C-10 bond of nagelamide L (2).

Nagelamide K (1) is a new dimeric bromopyrrole alkaloid possessing a rare piperidinoiminoimidazolone ring⁹ with an aminoimidazole ring and a taurine unit, while nagelamide L (2) is a new dimeric bromopyrrole alkaloid containing an ester linkage.¹⁰ Nagelamides K (1) and L (2) exhibited antimicrobial activity against *Micrococcus luteus* (MIC, both 16.7 μ g/mL).

Acknowledgment. The authors thank Ms. S. Oka and Mr. T. Hirose, Center for Instrumental Analysis, Hokkaido University, for measurements of ESIMS and NMR spectra, respectively. This work was partly supported by a grant from the Uehara Memorial Foundation, the Yakult Bio-Science Foundation, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supporting Information Available: One- and twodimensional NMR spectra for nagelamides K and L. This material is available free of charge via the Internet at http://pubs.acs.org.

OL8003904

⁽⁹⁾ Nakao, Y.; Masuda, A.; Matsunaga, S.; Fusetani, N. J. Am. Chem. Soc. 1999, 121, 2425–2431.

⁽¹⁰⁾ It has been reported that treatment of oroidin with DMSO/TFA yielded a compound containing an ester linkage: Lindel, T.; Breckle, G.; Hochgürtel, M.; Volk, C.; Grube, A.; Köck, M. *Tetrahedron. Lett.* **2004**, *45*, 8149–8152, However, nagelamide C was not converted into nagelamide L (2) under the same condition as described above.